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INTRODI{ICTION
and

GENERAL COMMENTS

This introduction will review the general status of the problem
of the design of the vertical take-off airplane. It will attempt to indicate
the most effective means, both theoretical and experimental, to further

the knowledge of the problem. There exist certain basic requirements

“which canrot be bypassed ard without the full understanding of which a

really successful design cannot be produced. The essential elements

necessary for the development of such a design will be mentioned briefly.

The first matter to be noted is that the most costly method of
creating lift is that of the relatively heavily loaded fan. For this reason
it is basically desirable to equip the aircraft also with a regular wing
surface of sufficient area to relieve the fan-produced lift at the lowest
forward velocity consistent with the particular mission. As the forward
zpeed is increased a larger and larger fraction of the required fan power
may be employed for foerward propulsion, either by direct mechanical
transnissionto a conventional propeller or by merely directing the jets
gradually more in a rearward direction. In the latter case there are

several possibilities. One may, for instance, change the direction of
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i morrmmy

thm ot and. the cross section of the outlet openings in such a manner that
the area of the opening is reduced as the cosinus of the deflection angle
from the vertical. The mass of air per second is then reduced while
the pressure head of the fan is increased so as to keep the horsepower
reauirement constant, using the excess power for acceleration. This
calls for an adjustable pitca propeller which, of course, cannot cover
too much of a range. This case will, however, be covered in the

following as a simple example.

A more desirable case is, however, one in which the airflow is
Fept constant in forward flight by employing a programmed -eutlet cross
section as the direction of the thrust vector is gradually inclined back-
wards. Very simply, the pressure head behind the prepeller is then
maintained at a level to balance the velocity head of the incoming air,
due to the forward velocity. The propeller or fan is, in this case,
always working at optimum or design condition and is of fixed angle of
attack, while only the outlet is adjustable. This design is novel asfar

as is known.

The primary problem concerns the use of ducted propellers. It
has and can be shown that a ducted propeller carries, in the extreme
ideal case of proper inlet design, as little as one half of the total thrust.

The question is whether this gain is of any realistic or practical value.

iii
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The work, of course, is done exclusively by the propeller which then
carries one half thrust at double velocity through the disk. However,
unless the converging inlet is much larger than the propeller area
and scientifically designc;,d, the actual effect is;ound to be only in
the order of 10 - 20% . Also, this effect is not one of efficiency but
rather one relating to propeller size and load. The advance ratio of
the propeller is doubled, which-is favorable. It is definitely to be
expected that the overall efficiency in lifting effect generally is lower
for a ducted propeller than for a free propeller. Neither may there
be any net weight saving, in fact, the gain may only be one of a
reduction in the required gear ratio; while the added surface con-

tributes to increase in weight and drag.

In forward flight the angular deflection of the airflow entering

into the inlet opening of the duct is on the average near 90°, or a

‘right angle. It is quite evident that a 90° fiow deflection, if unaided,

will result in a completelly turbulent flow unless the forward velocity
is very small compafred to the inlet velocity. Also, the velocity at the
leading edge side of the inlet will be very much larger than the inlet
velocity near the rear side. The center of thrust of the propeller will
move both rearward and towards the advancing -side of the propeller
as in the case of an "unducted'' propeller 'in a free stream (as demon-

strated in the NASA wind tunnel test referred to elsewhere in this
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report). This unbalance of the propeller thrust may have disasterous
effect on the propeller; the gears and bearings will reruire a heavier

construction to take s vibration load on blades and bearings.

Therefore, teo obtain proper design condition, care must be
taken that the flow enters ;,he duct at constant veloc‘ity around the
circumference of the duct inlet in order to center the load and to obtain
full efficiency of the propeller. The mathematical problem of the proper
duct design to fulfill these conditions is given in the body of this report.
This study should be followed up with basic e?cperiments on the inflow

problem and the effect of baffles as a first step.

In regard to the outlet design, it has already been pointed out
that it is highly desirable to maintain a constant air velocity past the
propeller or fan. The cross section of the outlet duct measured
perpendicularly to the velocity vector must then be decreased slightly
with forward speed to maintain a constant pressure differential across
the fan at all speeds. The theory and design of such a duct should be
fully developed and elementary tests should again be performed as the

primary step.

The discussion so far relates only to a design in which the fan
is installed in the wing or body of the aircraft with the fan axis
generally perpendicular to the flight direction or witk a slightly rear-

ward directed thrust axis. In this case, a relatively large fan area

Li




may be most easily accommodated and, in fact, as little as one half
of the thrust need, in the limit, be carried by the fan in hovering
condi'tion. However, scientifically designed inlet and outlet vanes
must be provided to avoid deterioration of the lifting effect in
forward transiti;)n and to adjust the thrust vector as required in

magnitude and direction,

Another method is the use of fans turnable around a transverse
diameter of the fan disk (Doak type). In this case, the duct itself is
of little use since it must be reasonably streamlined and thus carries
only a small fraction of the total thrust. It can be shown that a slight
increase in solidity of the propeller is more efficient unless the propeller
is already very heavily loaded. Strictly speaking, inlet vanes are again
required in transition since the propeller efficiency will suffer by the
fact that the thrust vector moves backwards and towards the advarcing
side of the prope'’ler disk. In favor of this design is the fact that the fan
is only exposed fo heavy vibrational forces in the transition, and may be
adjusted properly in full forward flight with all, or almost all, liit

transferred to the wing.

Another interesting possibility is the arrangement tested in NACA
TN 3198 described under the title - "Dynamic Stability and Control
Characteristics of a Cascade-Wing Vertically Rising Airplane Models in

Take-Offs, Landings, and Hovering Flight" by M. O. McKinney,
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Louis P. Tosti, and Edwin E. Davenport (June, 1954). In this
experiment the propeller or propellers are located with the axis in the
normal fore-and-aft position, the slipstream being -deflected by outlet
vanes only. Although these vanes were net designed for a (slightly)
convergent flow and there was, in consequence, some stall flutter
causing a sustained pitching oscillation, the net result was promising
and should be fully explored in the near future. The overall lifting
efficiency of the fans reached 92% which efficiency with correction for
scale effect and design using a slightly convergent flow in the turning
vanes would have reached at least 4% more in a full-scale design.
How the practical design of such aircraft can be accomplished with

adjustable or removable vanes is a problem that might be fully justified

as worthy of further work. The efficiency of this arrangement is

apparently higher than in any other proposed sclution with or without
ducted fans. The practical problems in such a design appear perfectly

solvable on the basis of adequate experimentation.

We shall finally present a few remarks about the theoretical and
actual effee'f of a-duct since there is, sometimes, a certain amount of
misunderstanding., It has been stated and shown in the theoretical
section of this revort, that the duct, when inserted in a large surface
such as a wing and with a scientific design of optimum inlet configuration,

may carry in the limit one half of the total thrust of the combined
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arrangement. The propeller may, in consequence, be of smaller
diameter and run at a more favorable advance ratio. However,

there exists the fundamental difficulty that there tends to be a
cancelling effect of the extranecus lift caused by a considerable
suction effect on the lower surface which is inherent in the problem.
This can theoreticaliy be avoided by a cylindrical extension of the
duct below the wing surface. The lifting efficiency, therefore, always
appears to fall short of expected values even in hovering flight. In
general, a duct design cair evidently only be defended in the case in
which the wing is used to enclose the fan for flight at very high speeds
and for a very heavily loaded fan. For lower top speeds a design a la
NACA or Doak may be more promising, subject to necessary tentative

or obvious improvements already indicated.

We shall finally give a few remarks about the pitching momenrt.
There is again a certain misunderstanding existing in regard to this
problem. This pitching moment is not an inherent fault of the design

and it cannot be alleviated by simple baffles at any point. It comes

simply from the fact that the incoming momentum is ordinarily not in
line with the outgoing momentum. It will be shown in the body of the
report that the incoming air is made to work on an arm 5 R which
is quite considerable and that the outgoing air similarly acts on an

arm of considerable length, if or when the flow is deflected in a rear-

ward cirection. The design referred to above as the NACA method
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avoids or may avoid the pitching moment with theoretical perfaction.
In the limit, therefore, a design with zero or nearly zero pitching

moment is entirely possible. The magnitude of the pitching moment
of the regular arrangement is indicated in the theoretical section of

this report.

This report contains two separate main sections. The first
covers certain theoretical developments, including some new ones of
fundamental aspects. The theory of the line sink in a two-dimensional
wing represents a classical sclution in the airfoil theory. Closed
expressions are given for the hitherto unknown pitching moment. In
the second section of thie report, the rather extensive experimental
literature has been analyzed and consolidated. Finally, there is a

short appendix giving certain specific design and performance problems.
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LIFTING FAN AIRCRAFT

I INTRODUCTION

1'o design an airplane of a nonconventicnal type character-
ized by at least partiai use of fans to produce lift requires a knowledge of
new effects not entering into the design of normal airplanes. Random ex-
periments and flight testing may, at most, show the difficulties, but without
an adequate theory such testing rarely leads to more than an accumulation
of scattered and sometimes contradictory findings. On the other hand,
while the theory may not directly provide complete answers, it is-sufficient
that it provide a clear understanding of all principles invelved and provide
means for an orderly solution of well-defined problem areas by experi-
mentation or numerical calculations or both. Only in extremely simple
cases may a solution be found without a clear understanding of the theory.
The lifting fan aircraft does not fall into this category as experience has
shown. .

We shall give some elementary considerations of the problem of
the duct or propeller enclosure commonly appearing in fan-lifted aircraft.
The purpnse is to show the underlying principles which may lead to better
understanding of the problems involved and to show means for solving

such problems by experiments or calculations.
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1I. GENERAL CONSIDERATIONS

A, The Effect of a Duct

Surprisingly enough it will be shown that the
propeller duct serves only one useful purpose, namely to reduce the
diameter of the propeller. It appears that all other effects are un-

favorable and must be recognized as such.

Let us consider a propeller or fan in an opening in an infinite
wall (see Figure\ II-1). Le‘t the volume of air be of a deneity e and
let the volume be Q per unit time. We shail conduct what is called a
""Gedanken experime;lt" by putting a series of baffles as: shéwn in the
figure. The cross sectional areas of the channels leading from the
hemispherical area down to the circle -of the propeller plane are all

reduced in the ratio of two at the upper end to one at the lower.

1_ e >

é\\\ﬂ / [

Vi |,,_

Figure I1-1
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The channels are frictionless and a constant negative pressure is
maintained at the plane of the propeller, or rather, immediately in

front of same.
The velocity of the medium in the hemispherical infinity is then

__Q | II-1
= 2mr? HECL

The negative pressure beyond the circular opening of radius R is then:

Lol & (11-2)

and the resulting upward force is then given by the integral

_LyQ ZJ“_I-
F“‘z'?(‘ﬁr") . r4Z1TVc,r

oo 2
=_9§pJ 2dr __f8 _ (11-3)
8T ' Jg I3 8TR

With uniform (negative) pressure in the circular opening immediately
in front of the propeller there is, of course, uniform velocity since the

flow is potential flow with no frictional losses.

The velocity in the plane of the circular opening is, therefore,

Q
V.= —y . (11-4)




and the corresponding local pressure

2

P:-%([—%—} | {11-5)

The downward momentum may now be calculated for the opening as

(p+ PVDHTR= le(ﬁig +€<1TRZ) TR

(11-6)

=é‘(’< W@f}\z>27TR2

. QZ
"‘e TTRZ

There is thus an equal and opposite (or upward) force on the wall and

the baffles equal to

2
F :_I..? Q (11-7)
2\ TR?
Since, as shown above, ._-e —s ) " is carried on the infinite
TI'R

wall beyond the radius R , the remainder, or

2 @

5 'ﬂ'Kz (11-8)

F =
is carried as an upward force on the baffles.

Finally the propeller must restore the pressure back to zero
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and consequently carries an upward force

|, 6
= 2—__ 1I-9
F=PTR*=5¢ — (-9)

Briefly, therefore, in the ideal case with a propeller located

in a "large' surface and provided with "ideal" inlet baffles, the

propeller carries exactly one half of the tdal force.

In fact, it may be shown in general that the force on the propeller

situated in an infinite wall with an ideal inlet-duct (as in Figure II-2) the
propeller, when properly loaded, again carries exactly one half of the

total force.

Figure II-2

pd
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In brief, a free propeller under ideal conditions operates with
a velocity at the plane of the propelle;' equal to one half of the final
velocity in the wake. If the propeller were to operate in the region of
the final velocity (as in Figure II-2) - (normally at least one radius
behind the plane), then the cross sectional area of the propeller disc
would be exactly one half of the normal area and the velocity would be
double, in other words, ithe same horsepower on half the area. To

achieve this result it is necessary to install an ideal-duct or baffle

system. In practice it must be stated that a considerable loss in drag

will be caused by such inlet or baffle system.

As final remarks, the condition of an infinite plane can be
relaxed without undue loss in lift to, let us say, a plane equal in area
to a few times the propeller disc area, but the condition of ideal inlet
vanes cannot be relaxed without a large drop in the efficiency of the
propeller due to resulting improper velocity distribution, In fact, a
serious fault of the most common design is the excessive velocity at
the tip of the propeller. The complicafing but important effect of

forward velocity will be considered in the following article.

il




B. The Moment Acting on a Surface With a Ducted Fan

There exists a simple and perfectly general
equation for the moment of a source (or sink) in a plane. As this
problem has a direct bearing on the problem of the lifting fan, we shall
show the development in the following. There is also a simple expression
for the corresponding ideal ""drag". This material is given to show the

principles involved.

4

7 /v,,

P
I,f-:/{,;:;%‘q

— -

Figure II-3

In Figure II-3 let there be a sink at the origin in the x - y plane.
At a distance the resulting velocity due to the sink is-directed along the
radius vecter towards the origin. Let this velocity V be in a plane

BOA containing the z - axis and the line- OA which forms an angle of

1l



with the x-axis. The velocity vector forms an angle q) with the

vertical or z-axis. One has the following components of the velocity

vector
V, =—V5sin{ Cose!
\/Yz—vsintJ(Sino( (I1-10) l
V,=-— \/COS\P

Further, let the forward velocity be Vo directed as in Figure II-3
along the negative .y -axis and uniform in the upper half space.

Let us next draw a hemispherical control surface of radius R around
the origin O. We shall now calculate the momentum entering such control
surface. This momentum corresponds to the "drag''. We shall next calculate
the moment of the mom entum entering the control surface. This quantity
gives the pitching moment resulting from the sink,

An element of the surface is given by

dSP_=)’as:nkydo<du}z (1I-11)

The component of this surface element in the y-direction is

dSZY—--—-d_O_SimySino(=rzs:n‘l},5ino(dq,do( (11-12)

We shall see that the other componentsq'_Qaandcl_Qxare of no
concern since there is a right-left symmetry together with a fore and

aft symmetry in the momentum integral.

As we are only concerned with the momentum along the y- axis
\




13

the arm around the x - axis is always

r cosn{;

which is the vertical distance above the x - y plane.

We are concerned with the momentum along the y - axis or thc

y - momentum. The unit momentum is

M=0(Vo+Vy) -13)
There is thus an excess of momentum in front ard a momentum

deficiency in the rear quadrants as compared to the mean value. It is

simplest to consider the air as containing a momentum vector eVa

in the y direction and a momentum vector ev in the radial inward

direction. It is obvious that the seco=2 vector does not contribute to”

the moment of the momentum, and one, therefore, need only consider

the main vector

Mzevo (11- 14)

and calculate the quantity of air crossing the control surface. This

quantity is simply

VdSL

since the constant velocity \/o contributes nothing.

With

d= r"'s'int};da(dl}) (1I-15)

bl
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‘ and the arm

There remains for one quadrant

I
2

4'—M= r PV Vo I*Sinpdetd Feosy

Y=0 ‘ol=0

— v
- QVVO ya"q_—

M=QVVO'T|'R3' (11-17)
where R is the radius of the control surface.

This is the significant expression for the pitching moment.

Since the volume per second through the sink is

one has also
_ _R (II-19)

Further, as the "lift" is

L= e(,)\\/i : {11-20)

where v' is the velocity of the jet, one has further for the pitching moment

LY. | -
M=L v >R (11-21)

10
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It is thus shown that the pitching moment increases. linearly
with the "forward" speed \/, . The quantity R or the radius of the
control surface is related to the dimensions of the "airfoil" or surface.
It can be shown, however, that this is a general relation. A large

surface around a duct is therefore the cause of a large pitching moment.

By a simple integration of the moinent one obtains fa the 'drag"

D=pV, 4 (11-22)

and consequently

<

L vy {11-23)
D V. .

where again is the forward velocity and the jet velocity.
0o 28 y ) J y

The ""arrested' momentum or ''drag" e& Va thus acts on an

arm —— R above the lifting surface or the propeller plane where R is

2

the "mean' radius of such plane or area.

11
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C. Moment of Momentum Due to Sink in the Center of a
Rectangular Plate

/ Ve Let V| be the constant velocity in

Vi the negative Y direction and Y/ the
| velocity due to the sink in the center

of the rectangular plate. We shall. _.__
initially consider_ the velocity VS to

| be given by the formula

Y Q
—_— —_—— 11-24
. Vs 2mre : :

Figure II-4

which is equivalent to extending the plate to infinity in all directions.

Q 1is the volume of air per unit of time and | the radial distance
from the center. We shall show, in a later article, how the case of a
finite plate may be obtained. The purpose of the present-development
is to show the general effect of the orientation of the rectangular surface

on the moment of the momentum caused by the sink.

The pressure is given by

=P 2R+ ) - 0Uds (1-25)

12
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Since the two first terms are symmetric with respect to the center of

the plate it is only necessary to consider the term

where ¢C is the angle of the radius vector | with the X axis as the
only term contributing to the moment around the X axis. As each
quadrant in Figure (II-4) contributes the same amount we may write

for the moment around the X auxis

Y, (X
M=4j J 'e\/, Vs Sinex-YdXdY (11-27)
0 o J

By reference to Figure(ll-1) it may be verified that this is a

''nose-up'' pitching moment as expected.

&

With vS == —2?}’_{ and sinc{ = —T’— one has

Y %
M=4pYV, ZTT{J —%’—dde (11-28)

We shall obtain the double integral

Y X ! x|
j vy VT
\[ : R +Y2 0 Y sz'*'Ya Jo

_XY' d
[—'—z

— y. Sinh™—
--X,Slnh X,

13
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and the moment may be written:

20V QX Sink !5 (11-29)

Also in the form

M= e\/& XSmh"—I—(‘— (i1-30)
i

it is seen that the arm Q@ is

o= X Smh (11-31)

Let us consider a rectangle of a given area X1y * 1 or the area

A - 4. One may then show the effect of the orientation of such rectangular

area by the following table for a moment of the momentum or the pitching

moment M or rather the arm Q. , which is really a moment coefficient.

TABLE 1I-1
s
x| 12 1 2 4
1
X | 2 R
Sm;;'%i_ 0.48 .88 | 1.44 | 2.10
a 44 | .56 .62 . 67

14
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Ncte that a change in the "aspect ratio' in the ratio of 1:8 only
changes the resulting moment by fifty percent and that the fore and aft
orientation thue is slightly more objectionable as far as the moment is
concerned. Note that the moment on a square, as expected, is almost
exactly equal to that of a circle of the same area. These effects are
all, of course, caused by the fact that the pressures decrease as the

square of the distance from the origin. These effects may be given

more precisely by a method to be given in a subsequent communication.

The purpose of the present article is to show that for a given area the
moment effect at a central sink is greater when the ""aspect ratio' of
the surface is small, that is, if the surface is oriented in a fore and

aft direction,

15
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111, TWO-DIMENSIONAL WING THEORY

A, Wing With Line Sink on Upper Surface and Discrete
Line Jet on the Lower Surface

In the following is given the theory of a wing with
jets showing the integrated effect of such jets on the lift and the moment

of the wing.

A source at (x1 v Yy ) of strength € and another source at

(x1 Y ) of the same strength gives a symmetric function {about the X

axis) (see Figure III-1)

¢S= 48Tr {fo?[( x—x,)2+(Y-Y,)":,+!e'7=[(x~=x.)z+ (Y+Y.)il (111-1)

If the points (x1 » Y ) and (x1 » 7Y ) are on a circle of unit radius, the

quantities

M =] (=) (-,
and

N =] (= X)2+ (Y+Y)?

may be expressed in angular coordinates o{

M =2 -l — Los(ol-¢g| )-

N=2[ 1= Cos (st+et,)

16




and one haS in angulal‘ erdinates
!

UNIT CIRCLE SHOWING COORDINATES USED

Throughout Chapter III the

reference length {or unit) Cosol
corresponds to the radius 050l=— X
of the circle or the half Sinot=Y

chord of the wing.

Figure III-1

17




The velocity at the surface of the circle is

L ) (I11-3)

With the circle transformed into a straight line one has for the velocity

~ along this line with a source of strength E on each side

Vo= 5d dot _ é R L dN | dx (I11-4)
5= de o X M et T TN deL | dX
One has further
2 dM _ Sin(et=9dy) C?‘ ~o)
MdA T |- Cos(t-cl)) 2
2 dN Sin(st+=4) ol+o,
= :Cg"‘—-——-
N dot |~ Cos(et+edy)
- and
Cot A-24 + Cof A+l _ 25incd
Lo 2 . Cosol— oS!
Also dot = J and one has finally
dX Sin
d& _ Sinod |
Vs=2 Tr Cosol-tosot)  Sinck
V.=_-E. ! (111-5)
S T Cosck — Cosol '

18




Note that because of the symmetry one obtains with a source &
on each side actually a simple source of strength 2 & in two-dimensional
space. The line between x = -1 and x = 1 has nmo influence in the flow as

expected. With x - coordinates the e¢quation then reads

2 I
VS = :
T X=X
We shall also need a non-symmetrical flow configuration with a source at

(xl » ¥ ) but with a sink at (xl =Yy ) . The development is entirely

similar with the exception that the quantity N now has a negative sign.

There results

ol—of; . d‘f’ﬂ__ 25“’!0“
Cot =5 Cot 2 Cosol— Cosd

and for the non-symmetrical velocity

£ Sing, _ l (111-6)

Vn=- T Cosd—Cos0l, SindK

This expression may be written
, ,/ |~ XF
V=5
nNTo X=X, J_":_x_a_

Note that the velocity V goes to infinity at x s+ 1 and at x = X

as it should.

19
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We shall next calculate the flow functicn for a sink of strength &
designated as - £ located on the upper surface only. It is observed
that if one adds the symmetric and the non-symmetric flow functions
already developed one obtains the effect of a double source on the upper
surface, since the source and the sink cancel on the lower surface. We
may, therefore, write for the velocity resulting from a sink ( - & )

only on the upper surface:

Vz—_ZL__(vS'*'Vn)

r 5“’]0(]

V= &( ! - :
2T \ Wsok~CsA;  Cosot- W5l SincA

To avoid the infinity in the velocity at x 2 1 or A =T or to

comply with the Kutta condition, one must introduce a circulation function

o= T | (111-7)

where T' is the clockwise circulation constant.

The velocity due to circulation is then

W\_d#’_ d¢ d«t _ T _| | (111-8)
T dX T dot dX 21 SinA o

Now with a sink on the upper surface

Vj+ V= finite at ol =17




€ . ' . Sinel + T . = f{inite
2m  —l-cosely, O 2T 0
or o sinol, o _, i (I11-9)
T=&-5tne = ETan-=¢ I- X,

Hence the induced circulation goes to infinity for O(, =T
or when the sink is near the trailing edge. For the sink in the middie

O&, = —32-_[—' ™= & and for the sink near the leading edge T->0.

B. The Effect of the Combined Flow Field

There are now altogether four velocities Vs B

Vas Vp  and a superimposed constant velocity W . We shall rewrite

these quantities,

V= - —
S 2T Cosot+ X,

_ ¢ L/
Vn = 2T Cosk+ X, Sinet
: (I11-9a)
_ & w1
Vo= 27 1= X, 5inet

£
W= 2T -w° (where W, = _Zélf_ W for symmetry)
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There is thus a symmetric component comprising

W+ Ve

and a non-symmetric component

Vin+ Vin

The acting negative pressure on the upper surface is then

2
-2'—-(’[W+ Vs + Vi + vp]

and on the lower surface

Similarly

%-Q[W+ Vo — (Vi + \/1—-)]2

The net lift force therefore is simply the difference
AL=20(W+Vs)(Vn-+Vp) (111- 10)
and the integrated lift force is then
i
L=2€J (W+ Vs )( Vn + Vp)dX (111-11)
-l

and the clockwise moment about the point %1 or the location of the sink

is thus

| .
M)( =2€/{ (W+Vs )(Vin+ Vi )(X= X, )d X (1m1-12)
| =l
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Inserting the expressions for the velocities the integral becomes

AT
gl E Y n l [ Y
L=2¢(37) ; (wo+ 6050(+X.)[60$o(+x,+ I~X,]sino( Sineldlol

+T :
=20Y (LY r | L]
=2 ZTT)Z (w+ cose(+x.-)(coso<+x, * 1= X, )det

or rearranged

+T ]
= 2¢Y, —_ZTT)JO {(w,,ﬁ:;!) Cosot X, (oot X2 e "‘xn}d’x

(II1-13)
The first term contribu”t“eAs nothing.
The third term contributes
£ |2 l )f
= nmr— - l ) — ' [P
I‘I ZeYl(z_-q-,) Wo =X, m= QéW(Tﬁ (II1-14)

For the second term we must evaluate the integral

4T +T
( ot | Sinel

o (Cosel+X))2 | = x,2 | Xi+Cosed
o

23



There is a singularity at X) We must, therefore, omit the

range x; -4 x) to x1+Ax1 . We get, therefore:

| . ZYI ____ 2
|°""X|z AX| YIAX

The contribution to the integral is thus

E \2 2 _ £\ | 15
Lo=2e(z) N g% 'Q(v)'ax (H-12)

This lift is carried on the wing beyond (outside) the opening 2 Ax .

C. Effect of Propeller and Baffle System

With a perfect baffle system which may be
approached in a practical case there is no loss at the -entrance to the
“'"ducted'' propeller, and the ideal case potential flow is in any case,

the most important as the limiting case.

The pressure difference produced b7 the propeller is equal to
—ZL e Va where V is the velocity at the propeller or in the propeller
plane. This pressure differential will exactly restore the pressure to
normal. The thrust of the '"propeller" is thus -é- e_vz. 240X

where 2 AX corresponds to the opening or

24




= oviay — ol E Ny = & (111-16)
To=eV AX—e(m)AX—€4AX

Note that the propeller does not carry the full thrust. The

total thrust caused by the sink equal mass per second eé multiplied

by the final velocity —Z—gx— or the total thrust

éZ
TT= e—-z':—AT- (IH-17)

Thus exactly one half of the total thrust is carried by the propeller in
the duct. The remainder is carried by the ''perfect" baffle system
except for the relatively small portion (Equation (III-15):

I £2
W‘e ax

carried by the remainder of the wing beyond the opening Z2AX , and

the independent contribution of the induced circulation shown above.

Thzre are thus the following contributions to the lift:

The contribution due to induced circulation

Y

L= e—fl—:;(-l—fw (I11-18)

and the cahnt"fibution directly due to the sink with the thrust carried one

25




half by the propeller and one half by the bafile system and the wing, .in

total

62 £
= =pZ 111-19)
Ly=¢Zax =F¢ Wo (

where Wp there is the velocity in the plane of the propeller or the

€
28X

total downward velocity

D. Pitching Moment

We shall next proceed to evaluate the moment

around the point Xq the location of the sink.
+T
2 7 | | [ \/
M= 2?(‘2%') Y) Jo \ Wot Tostr X; Xumz+x.+ | = X, /\MH')&"{
+T
_ € 2 | | Wo
‘ZQ(—ZF) f {(W°+ 1= X) )+ Coso&+)(,+ I- X ‘Cosd+xijdo(
0
£ 2 T +] £ V%, Wt
—p! o Jog— R . Ca. M
=20(5p) %) Exd=2e(m) b i T
]
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or finally

M= Qf—.-_—_Y";('l“<W+ ;:n. ) (111-20)

We shall next indicate the length of the moment arm. With

the moment in dimensional form, with b as the half chord

Y &
M= ¢ e W+ 775)

and the force or lift

Y
L=Qf(—-———,_”xl W+ WD)

one has for the arm

Yi &
b= Wz

QA= M = v
—_
W W,
or also
- 6 (I11-21)
+
o= b Wp 2T Wp
W + )= X
WD Yi

The arm 0O, is given in terms of the half chord as unity. The

ratio W/WD is the ratio of the forward velocity in terms of the

€
26X

downward velocity of the propeller WD =

27




These results are all given for zerc angle of attack. The effect
of the angle of attack may be directly superimposed. This problem will
be taken up in a later sectiou of this report. There is a ground effect
and also a displacement effect of a (large) jet on the lower wing surface

which are not treated at present.
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v, FLOW FIELD FOR UNIFORM SINK DISTRIBUTION IN A
CIRCULAR DiISK

A. Point Sink

The velocity potential for the flow of a point sink

of strength 5 O\ located at a distance ”o from the origin is given by

' L Rw
. Sink $Q (IV-1)

(=]
oy

54’0’,“))—4”2( )?,,(Cosw) for —%>;

Sp(rw)= "ﬂmza( )g,,(c,o:»w/ for ——<l

For an angle ¢ - 900 the above Equation (IV-1) becomes

sp0rw)= 25 ( “‘R.(o) for £> -

o 4 =
(1Iv-2)

0Pp(h w)= 68 E( ; )n?,,(o) for {%4!

'! w=90° 4Th nep

] R 29




B. Circular Disk Sink

The velocity potential along the axis of symmetry
of sinks uniformly distributed over a circular disk is found by integrating

Equation (VI-2) over the area of the circular disk.

Y

w
1. Case (a): Fr=2R,
For > RO i-e. —%— >| the velocity potential along the axis
°
9 = Obecomes
Ror2T
oo n

(r 6 =J S& L Fo IV-3

) B IT T

w=90’

Integrating we get

L SQTREE P ( Re)"
P (n0)= 2mr g;o n+Z \

Substituting for é&-T]’R:’ = Q\ ' we find
_ & & o) _n |
=L E 1 er L

30
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Since the flow field is axially symmetric with respect to the

axis @=0 we know that the Laplace equation

R 4’()’,9) ar '264) SmB ao<5'“9 9)=0 o,

has the following non-singular general solutions

%o 0o
Rey=E AnF"Fa(L050)+ & Br s Ty(cost) (100
=0 n=0

For e"—:O the above equation becomes

¢(r, 0):§ A, r"70) 4—“% anr,,T,?nG) (IV-7)

Comparing Equations (IV-4) and (IV-7) we get

& Tw0) pn
2T wntz O

(IV -8)

A=0 & By=

Consequently for [~ > R, the velocity potential 4) ( Y, 9) is

given by
ko Ta0)
b )= angoR: ntz r"*' il
ox L8 E (R RO Bl {1v-9)
¢(rle)— ZT”’-V\%D ) h+ 2
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2. Case (b): < Ry

For r< R, we have that

)

| (for o<, <r
‘, (IV-10)

\%

for r< <Rk,

AN

and

sl sl

Thus the velocity potential CP (Y, D) at the axis §=0 is found by

integrating Equatior8(IV-2) from Otor andfrom r to R respectively,

P, o)=J

i.e.

r et |
6o n
J —8&.9_:( ) R fdhdy
0

fmr
4 (IV-11)
R, zvr o =
JJ "Trn-o(—g) n@)ndkdf
o=
r /o

Performing the integration we get

r Ro
, n+j n dya
: ;n@){—r—ﬁir; dr,+ rJr =

bry=35

or

S p—

n:H
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Substituting T Roz- 5@\= Q we find

-

‘ -Pn(.o) Zrit) __( r " (IV-12)

'¢(r’0)_ 2T RE “2,, n—=| I'sz. Ro) gl
n|

Making use of Equation (IV-6), since the flow field is axially

symmetric, and comparing Equation (IV-7) we get

Z ?K(O) 2K+
‘ ZWRZ S - K+2 |
5 (IV-13)
A Q Pa(0}
An=— ZWROWH' y’:—l for Nz
B,=0

The summation of the first term of Equation (IV-13) is

2 0O) 2K+ (IV-14)
S=Z I Tx+z
K=0
Kl
Since the odd Legendre polynomials ?Z.K-H('O)EO , the above

equation might be written as follows

_c 4K+
5= % GR=1)(ZKF2) Fax(0)

‘Expanding the coefficient of PZK(O) we get
co

S 2( 2K —| + Z;(’-fz)‘FZK(O) (IV-15)

=0
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From the expansion of the Legendre polynomial at zero we have that

3:5.7----- (2K=1)
(°) Sl 24 AT FEEEEPS 2K

Consequently, we might write

_ 2K+ | (IV-16)
Pek+20)= — Fax©) ZK+2
The first sum of Equation (IV-15) might be written as
o0
SENNE I VR
= 2 = —
oo 2K-1 TEK ko1 2K=l

Changing the subscript k to n, where n=z k-1, Equation (IV-17)

becomes

S ) sza(o)
K%O 2K-I ng 2n+| =

Making use of Equation (IV-16) the above equation might be written as

2 RO _ 2 - P2n0)  2n+]

=, 2kl 2n+l  2n+t2
Qor

% sz(o) _Pn0) =—|

o K 2ntz
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Thus we have that Equation (IV-15) becames

o= E(Zhl an+a)P?-"(°)"'

2k L ‘ -
o= E (k‘l)(K%) Pe©)=~| (1V-18)
K#l
And
2 2K+| I
;\% 2(K-1)(k+2) PK@:‘E" (IV-19)
K|

Making use of Equations (IV-13) and (IV-18) the velocity potential

?(ﬂe)becomes

-

¢(i’9)—— {P’ P(C°59)+Z —;"ﬁ( g@) Py (cos9)}  (xv-20)

where
S'=z & Z=Z
S I

C. Streamfunction

A streamfunction LP (Y; 9) is-defined from the

continuity equation

_.l__a_. ?- ' 3/. \ —_
r‘ar<" M)t o o\ "0 Ms) =0
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— R

[ OSSR |

- (@Trsmeu,) + 2 (2T rsing Ul g) = 0

Thus we have:

-1 .
SF 2TrUy Sinb ——
oY
SE=27r ‘M- Sin €
This definition also satisfies the equation c\.b"
d( F-lux)= dy kb
dL{J— ——dr+ -—\g-dﬁ (IV-22)
d(Flux)=27Fsinb U6 —2TFSinb- Uedl
1. Case (a): k‘:?: Ro
From Equation (IV-21) we have that
_3__ k& n-rl(Ron
Bhy= ar"'zwr‘?o vz ) MO @59)
(IV-23)
> & S/ Ra Pulo) dPy
MG:— >0 == Zerﬁlnér%( rl h+2 d’i |
'M = Cosf
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Thus the first of Equation (IV-21) becomes

Q_LI)‘___, . - . — &S;HZG = Ro g Pn(o) d?ﬂ V-24
SE=—2TrugSing=—"7 &P Iy (1v-24)

Integrating we get

0 ©) dF )
\b=-85in G)Z( R) nf?:wi) d);' + 1,0(0) (IV-25)

Differentiating Equation (IV-25) with respectto 8 we get

2 R\ Fa0) d7Tn LFn ,
_Q“gr(_?_ -————n(n+a){Z5 900592?— }A +'F(9)

or

q) o Py\(O 2 dPn J.Pn i )
—a-—: %_( ).5 9{(1 .U) }‘ —Z/AJ}A}'FP(S) (IV-26)

nn+2)

From the second of Equation (IV-21) and from the first of Equation (IV-23)

we have that
Y rrin sing=- 615»462—”1'—(;';9?(0)?(@59) (1v-27)
38 r=" ' n+z all

Comparing Equations (IV-26) and (IV-27) we get

QZ( Re Fn(O) {(I}A /Ad?"}-{-f(e) QS GE_[I%_( Ro)" Pm?n(}‘)

Py n(n+z) }A

/
Solving for -F(e) we find

e e RRO) [ T L T,
“QSmGg(—) (n+z){(' }4) /u 2/;#4 +n(n+|)?n(/u5?

=-L@sine—Tfo) (1v-28)




T ———— R

Since the differential equation in the brackets is equal to zero, the

above Equation (IV-28) becomes

-Fé6)=—-§—5l'n9 & -F(9)=_g.(cose+c,) (IV-29)

and for @=0 we have \P(O)= 0 . Consequently

And Equation (IV-25) for the streamfunction becomes

Ro) Pal0) o Pa
LP(r 6)= —(6059 l) QsmeZ( ;)h(:)t)z) a/: ») —

2. Case (b): ré Ro

We follow ihe same procedure as that for the Case (a).

From Equation (IV-20) we have that

T z
(IV-31)
b3 9;;5{:;}@ "*j;f”‘}
Thus, the first of Equation (Iv-zi) becomes
b e L SO s
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Integrating we find

2 1 P, % Pulo) [ ¥\ dR e
LP QSMG( {?J/}L""E n- l)(V)'H)k Ro/ d}:}+ 3(9) (IV-33)

Differentiating Equation (IV-33) with respectto § we get

d'7,
—3%":"‘&('%)2{—2!-<253n960593d}% S’ —— I )

(IV-34)

2* o) [ r ' d?h__ m’ d P +
+“§b G=1) (h)\ Ro) (anewgdﬁ 2 9&}) 269)

From the second of Equations (IV-21) and from the first of

Equatiors(IV-31) we have that

.&: 2T r"MysinG
o6 (IV-35)

=—&5m9( ){?,(cose)-yz _’1&@( ) ?n(c,osa)}

Comparing Equations (IV-34) and (IV-35) we get \ _
o (L] ¢
Al F\o){ 5»19[ /A }A

)
n d?ﬁ — e ha
+£ (Yl:‘:){(ﬁi-l)( g,,) si "6,}}"4}; =( )d J} 40)

— QSmO( ){?,(cose)-i» 20* n?n(o)( ) Tn(oose)}
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Solving for 3'(9) we find

.329)=-Q(-§;)2s.'ne{é-[(n—}ﬁ)jf’_ z;xd;' +2p]+

(IV-36)

2% P0) (r 4 d]’n
+g - l)(w(Ro) [(n/u /A-{-n(nﬂ)?n]}

Since the differential equations in the brackets are equal to zero,

the above Equation (IV-36) becomes
!
3(9) =0 and 2(9) = CZ
and for §=0 we have \.P(O) = (0 . Consequently

And Equation (IV-33) for the streamfunction becomes

n+l
b(r,8)=-Qsin 9{‘-( )+2 ﬁ‘“?";(g‘)‘“)( ) j;’l (1v-37)

because

dp _ d(wse)
?FL— d (C056) =1

D. Velocity Potential at r = Rg

From Equations (IV-9) and (IV-20) for the
velocity potential for r» R, and rgR, respectively, it is easily

shown that

4)( Re, 8) | 40



foskede | o |

+

[ S

has the same value on r = R0 5

For the proof we make use of the series expansion of the Legendre

polynomial P1 in the interval from 0 to 1, i.e.

Co
=S U (17-38)
NnN=0

Since P1 = /u is an odd function and we are interested only in the
series expansion for the interval from 0to 1, we define ar: 2ven
function P |P1| Thus, we have
Pg = E O P ( ®)
n=0

Multiplying by ‘Pm(/A) and integrating from -1 to 1 we get
+

+| 00 /
B Tm(p)dp = & Qn | PaGp)PmGuA
[ e g
From the orthogonality property of the Legendre polynomials we find

+)

??m(fl)djﬂ = 0w -ﬁ;—‘- (IV-39)

-l
Since P, is positive in the interval fran 0 to 1, we may write
g .
=Rl in (-l +o 0)
P=% in(oto 1)

For m - even, i.e, m = 2n, we have

Pen(0)
??Z A j?' ¢ @nemz) (IV-40)
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Thus, from Equations (IV-39) and (IV-40) we find

4n+i
(zn-1)(zn+2)

azn: - ?Zn(o)

For m:- odd, i.e. m= 2n41, we have
-HN

P?Z,md,bt: 0

because the integrand is an odd function. Thus, we have that

Aopt =0
1

Consequently, the series expansion of PI in the interval 0 to !

becomes -

20

40+
== Z GnayGenir) 2@ Fn (€059) (1v-41)

And its derivative gives the following for the same interval 0 to 1.

L 4n+ | dPen(J) i
) = E = ,)(ZM,)P © ai (IV -42)

Making use of Equations (IV-41) we prove that the velocity
potential 4)0') 6) given by Equations {IV-9) and (IV-20) for r2Rj

and r&<R, respectively, has the same value on r = R,

Similarly, from Equations (IV-23) and (IV-31) for the

velocities for r?R0 and r<R, respectively, it is easily shown that

U-(R.,8) & Me(R,8)

|
have the same values on r = Ro c
For the proof we make use of Equations (IV-41) and (IV-42) respectively.
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V. ANALYTICAL RESULTS

~

The velocity cornponents are given by Equations (IV-23)

-and (IV-31) for the two regions:

L>1 & 0 <<
o

Ro =~
For a velocity normal to the sink disk, equal to one, the strength

of the source, Q, becomes

Q=21TR§“V,, = ?.TTR(,Z

Thus, the above-mentioned Equations (IV-23) and (IV-31) become

respectively,
a. Region "___:o ;,
po Znt2
_— Z2ntl Ro
A= = ZYHZ( r) PZW(O)%”(‘M)
(V-1)
oo
— g | (_Ro\*™%  dRn)
: r
b. R _—
egion R é |

00 Zh-l
!&,,z—cose—éa—?‘%(f%) " Pr©) En(/‘)

(V-2)

( = zn- dTen())
ue:Sinengoz,!,_, ",%) P.n©® d}'l }
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If the flow field of a propeller in a circular opening of an infinite
E plate is represented by a uniform sink distribution, then the flow field
in the region above the plate might be represented by Equations (V-1)

. and (V-2).

~a

4

- At the sink plane, there are symmetric radial flow velocities

—

toward the center line and a unit actual flow velocity no.mal to the
sink disk.
In the region under the sink plane a jet with an increased total

energy is emerging due to the energy added by the loading of the propeller.

For this region, one solution to the potential flow f{ield might be
found by adding a uniform flow of double the actual velocity, in the

cylindrical region with cross sectional area equal to that of the sink disk.

i Thus, superimposing the sink disk flow field to the uniform flow
field, we get a flow field which has a jet with a contraction ratio equal

to two.

i Since the cylindrical flow has a discontinuity on the cylindrical

surface, the resultant flow field will also have a discontinuity there.

At infinity, the mass flow from the circular opening of the plate

is equal to the mass inflow from the cylindrical surface due to the sinks.
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In the Tables No. V-1, V-2, and V-3, the values of the

radial and tangential velocities u, and ug are given for various

r

values of the radius distance r/ R, . They have been computed from
Equations (V-1) ard (V-2) for the regions

—L>O and O< ré'

Ro Ro

They give the flow field in the upper region of the plate for uniform
sink distribution and normal velocity Vs 1 at the sink disk. They
have been programmed in the IBM 704 computer at Republic Aviation

Corporation to an accuracy of ten significant figures.

In the attached Figures 1 and II the velocity field has been

“plotted as computed for uniform sink distribution. In the region under

the plate, the uniform velocity equal to 2V = 2 has been added
geometrically, and the resultant velocity field has been plotted. In
the last Figure II an effort has been made to draw the streamlines

which correspond to the computed field directions.
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TABLE V-1

Velocity Components u, and ug

For Unifarm Sink Distribution in a Circular Disk

6059'/% ol l2 |34 |5 e |7 |85
W |-000 | osc |02 | /55 | .2i3 | 280 |.353 |. 46 | .572 | 18%
VO @ oo | 1oco |).000 (1000 (1000 11006 {000 |1000 1000 |).000
02 020 070 | 12l |75 | 233 | 257 | .372 | .H5 | 590 | . 797
j.000 |.997 | 994 |.990 | 986 |.582 |.976 | 967 |.952 | .94
" 0xp | 096 | g1 |95 | 252 [ 212 [zes | g | 6o# | 792
1999 |.993 |.987 | .90 |.972 |. 9> |.2=1 |.934 [.905 |. 533

06 060 {10 | ko |-214 | .27] {334 |.407 | 496 |-6!3 |.786
998 |.990 |.980 |- 970 | 958 | .9s4 [.927 |.9¢i | 459 | .74c

080 | 129 B0 | .232 |.28%5 | 35! |.423 |.509 |.6l1% |.770

08 997 | 985 | 972 | . 960 | 093 |.925 |.00z |.869 |.5/4 | 470
. o 900 |49 [198 |.250 | 306 | 367 [ 427 | 519 [ 622 |.747

1995 | 980 |-964 | -946 | 029 |. 906 | -8B77 | 836 | .77 | 640
200 | 244 289 | .335 | 739 1 .4385 |.490 | .5%9 |. 605 | 64|
1 - 980 |.950 |.920 |.867 | -850 |.g07 | 755 | 685 | 590 | 455
300 |-337 |-373 | 410 | 444 |.485 |.520 |, 550 |.527 | 5o

130 o5t (.o |.066 | 819 | 767 | 709 | 690 | 538 | 460 | 352

.40 400 | 426 |.452 |.476 | 499 |.519 |.533 | .537 |.528 |.57)

' 917 | 861 | 805 |-746 | 682 | !5 537 | 454 | 345 [.279

, 500 | 512 (524 | 533 | 535 |54 | 534 |.5/9 | 492 | 456
I 866 |.80] | -"74 667 |.596 |.522 |.445 |.248 |.293 |.224

vy 600 |.596 |.590 |.562 |.570 |.533 |.529 |.499 | .#éz |.420

800 | 728 | 455 |.s82 | .509 [-435 |.,383 | .=295 |.22¢4 | )8

20 700 | 676 | 65] | €24 |.593 |.555 |.520 |.479 |/43% | 392

! T4 | 439 |.s¥¢ |.49i |-420 |.352 | 289 | 232 |.1#2 |43

80 BO0 | s | 107 1659 | 610 | £B0 | 509 | .ado | -+F | 368

b0 | 528 | 458 | (350 | iy | 2D 207 | 731137 007

.90 200 |.827 |-758 | -689 | 421 |:557 |.498 | 443 |39 |.344

458 |.377 |32/ | 248 | vze |07 Jez |13 1082 |.oT0

. 1525 | .847 | 770 | 695 | -b2¢4 | 556 |.995 | 438 |38 | 344

o 380 |-328 |.277 | 230 | 88 |52 |12 L.o%4 | .07 |.0b0

955 950 | 844 |78l | 707 |- b25 |.555 |.492 |.434 | 344 |.339

V312 | 268 |.226 | .87 (.52 |22 |.097 | .077 |.061 |.042
. 975 |.983 |.793 | ‘1071 |.627 |53 | 449 |.430 | 379 | 335
| 975 222 |00 |59 [ 03] 106 |.085 |.067 | 053 |.082 | .033
99¢ 990 .87 |78 |70 | 428 | 533 | 487 | 428 | 377 | 333

. 4l |20 {00 |08z | 4EE | 053 |io42 | 033 |.026 |.02]

46




emen  BEFEEG

TABLE V-2

Velecity Campaent. u,. and ug
For Uniform Sink Distribution in a Circular Disk

2 , , . . ,
e coso~2 | 1.1 L2 | 13 |4 115 e 8 19 120
"‘ 00 ~U(r) | T40 | 523 406|329 275 |.234 |.202 | .177 } /56 | -139
AU(B8) |-000 |.000 |-000 |-000 |.000 |-000 |.000 }.000 | 000 [-000
02 134- | .522 | 406 | 329 | -275 | 234 [.202 | 177 [ 156 | 139
040 | .65 | 008 |.065 |.003 |.002 |.002 |.00i | 001 |.00) .
i 04 T19 | 519 | 404 | 328 | 214 | .233 |.202 |.176 | .i56 |.139
076 | 029 | 0I5 [ .009 006 | 004 |.003 |[.002 |.,002 |.00]
! o6 698 | .53 | 49z |.327 |.213 |-233 | 201 |-176 | I56 |-139
05 043 1023 | 0/3 |.009 |.006 |.c05 [.003 | 003 |.002
.08 €73 | 505 |.398 |:325 | -272 | 232 (.20l [-176 | ./55 |.'5@
)27 |.055 {.030 |.0l8 [.0lz |.008 [.006 |.004 |.003 |.203
e 647 |49 (-394 |.323 |.27/ |.23] |.200 |.176 |.155 |. 138
T 44 | 066 | 036 [|.022 |.015 |.010 [ 007 {.006 |.C(9 |.003
- h 536 | 444 |.367 |-308 | 261 {.225 |.i9¢ |- 172 |.)53 |.137
o .i70 |.098 |.060 | 239 |.026 |.019 |.0i¢ |.gi0 |.cog |.006
Y 460 |-395 |.337 |-288 |-248 |.2l6 |-189 |.167 | /49 | i34
~ 6L | o5 o070 | 048 |03+ | 625 |.018 .04 |.011 |.009
40 407 |.353 |.309 | #48 | 234 |.206 |.182 |.i142 |45 (130
' 43 |00 |07 |.051 037 |.028 vzt .07 |.0i3 |.010
. 50 367 | 324 |.284 | 250 |.220 |.})95 |74 |./55 |.140 | .[26
- 123 090 (066 |.050 |.c37 {.c25 | 922 |-018 |.014 | 0
336 | 298 |. 264 | 224 |- 207 | i85 | 'é6 45 | i34 |.)22
60 104 | 078 |.060 |.04%5 |.035 |.0z8 [-022 |.0iT |.0/4 |.0)]
10 2312 |-277 (296 |.219 | 196 | 176 | 158 (.43 |.128 | 48
085 |-065 |.05! |.040 |.63] |.025 j.020 |.0)6 |.013 |.0if
.80 292 |.259 | .23 |.z207 | )85 VM7 |05t 137 | )24 {113
065 |05 |.04¢ |.032 |.026 | 02! |.517 |.0i4 |.0ii |.009
.90 274 |.245 219 |.:i94 176 159 | ja4 )13 |20 | 509
043 | .034 | .028 |.022 |.018 |.015 012 | .010 |,008 |.007
625 27 | 241 | z16 | 192 |74 [ 157 La43 | 130 | W18 | )08
037 030 |.024 |-0)9 |.c)6 (.03 |0l |.0¢%2 |.007 |.006
267 (238 [.2i3 |9 | T2 ss (4] |28 | )T | 007
- 950 030 (1024 1.0)9 |41 |.0)3 1010|009 | .07 |.006 |.94%5
. 575 ,263 | 225 (.210 |.185 | .70 |54 |jae |1z27 | 0é {106
! o020 Vo) Vo4 el 009 | 1007 |.004 005 | o4 | 004
A 990 26] 232 |.268 |.187 | 169 | .i153 |.139 |26 | )16 196
013 | ot | 005 |.007 {1006 |05 | 004 | w003 [.003 |o02

47

IR0 can—




] TABLE V-3
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For Uniform Sink Distribution in a Circular Disk
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; VI. APPENDIX I

] Wing With Line Sink on the Upper Surface

] In this article a general method will be given for the
evaluation of the velocity field of a flat wing with a line sink on the

upper surface. The chord of the wing is taken to be of length c - 4.

First we evaluate the complex velocity potential.

We assume that the wing is in the z-plane and has a forward

velocity W under an angle of attack o{,.

We make the transformation

5= 3'4——'— (VI-1)

Y

where:

3_—_—7\8;,{,3'; A ;/:x'n;'

Which makes the wing a cylinder of unit radius.

\ -
A / 14
.P' ‘ -l/r ; +1 . e
T F
W (=4 — W

?
z-plane z-plane




[ 1

Every point on the flat wing is mapped into a point on the unit circle.

A sink at the point . Py (x; , 04) on the flat wing in the z-plane,
is mapped as a sink at the point Pf (x{ . yi ) on the unit circle in the
/
z -plane.

where:
n | _ot0, g
3‘:=7(‘|+4,[;—9q,= 2;_;3,’4--—;,—-6 + € =20wsf
|

or

% = 20056, & H,, =04 | (VI-2)

From the theory of the flow around a cylinder due to a sink of
given strength, we have that the boundary condition of zero velocity
across the solid cylindrical surface is sati’_sfied, by replacing the
cylinder with another sink and a source of :the same strength as the
given sink, placed respectively at the inverse point with respect to the

circle and at the axis of the cylinder.

Thus, the flow due to a sink or a source on the cylindrical
.surface would satisfy the boundary condition if we add a source or a

sink of half strength respectively, at the axis.
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Rotating the. z/-vpla.ne by an angle equal to - of, (where KA, is the

angle of attack) we get:

Ya

N -y
Y'=Fe % vy
z"—plane
and
1/} -
’){" =C05<6|-o(o)= Cos(cos '9{\"-—0(0) (VI-4)
[
Finally the transformation W= j»”-}- —é—" maps the z'-plane

into a w-plane with the cylinder transiormed into a flat plate, with the

b{3

. . ES
sink at the point P, (x1 ) 0+) .

Y
C TN .
!
W . W=Z"+—5 (VI-5)
% =z s
l@——— Cz‘4—__\”] R
w-plane

where

0¥ = 2005(8,— o) =2Cos (L5~ —olo) (VI-6)
or
* " ’ 2 £
oxy =2 "=2(/cosoly [ 1= A'* Simoke )
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The complex velocity potential for a flow around the unit
cylinder with a sink of power 2& at the point zi’ and a circulation r )

is given by

FG)=W(3"+ 5)— 2(5 },)+Zn2n5+ }ng" (VI-7)

where the third term corresponds to the potential of a source at the
axis of the cylinder with half the strength of the given sink, for the

satisfaction of the boundary conditions.

Making use of Equation (VI-3), the above equation reads as

follows in the z'-plane:

FG=w(ze*"s )-—fn(g )ty + AL dngl s ot (V1)

The Kutta condition gives that the velocity at the trailing edge should be

finite and we have that

dF dF d}’ '
= = fini =

dﬁ dé' dj nite at } |
Since at z'=1

dy’ | _ o

A A
we should have dﬁ 2

d
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This gives the value of the circulation strength | .

Thus, differentiating Equation (VI-8), we get:

Iy y /Ty T

and at z'=1 the above equation becomes |

dF 51 - £ I € A

—|  =-2+Wsind!, -+ =0

dz 7= m l—é, 2T 2T
where

i N
=% k] 1=

Solving the above equation for I— we get:

[ = 4T WSind, + ¢ |22
=%

and substituting x/

1 by cos 8 the above equation becomes

Sme.

f— =4T Winol, +€ -—35 |—Cos8,

From the equation for the complex potential

—

j—~=u—£v

<

E (et £ £ L £ L AT

(VI-10)

(VI-11)

(VI-12)

(VIi-13)

(VI-14)
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and from Equations (VI-9) and (VI-10) we get:

o N N R A
U &V—(W(e )- T 3I_§;l+ ZHZ'+ZTT' }__,__ (VI-15)

7
12
)%
On the wing the complex velocity becomes
Ll €Y ¢ | e, |
- + (VI-16)

u-w:{w(e

-_—a ~ Y \ + .
euey ']T ew_eko, ZTTQLG Z-n-ew ,_éue

where Ol is given by X, = 2 cos 9'1

Simplifying the above equation and making use of the identity

| N . Sin(6-8)
= |+ 4 2 VI-17
| —e*°® 2 [ |- Cos(6-6) e

The above Equation (VI-16) becomes

£ _sin(68) T } | (VI-18)

M-LV={W5'"(6_°“)_4T|‘ |-Cos(8,-6) ~ 4T | Sin6

Substituting for r from Equation (VI-13) we get

— | wisin(e-cto)+5i £ [ sinb__ sin(4-6) )
@_&_—_—m[w{s‘_p_(? olo)'f-ﬁl.r‘\.o('?}'-f- 27 -ash, \-L°$(G‘-Q)}J (VI-19)

v=0

|




where the actual strength of the sink is &

£ =-1(2¢)

because only the strength of the sink corresponding to the flow field

outside the cylindrical surface is concerned.

From the trigonometric identity

5”1(9,"9) —_ Sin0|+ ane (VI'ZO)
)= C05(8-8)  Cosh—C0SH,

the above Equation (VI-19) is written as

M‘ssne{w[s'"ce °!°)+5'”°£°]+41r[ =Coshy  CoshosBy || |

For the case of very small angles of attack o(o , we might write

Sin(6-ol) 22 Sinp— ol ,C059 and Sinol 2ol

and the above Equation (VI-21) reads as follows:

E [ sin S"ne.-t-SMG:I (VI-22)
[

— 1 vl (1-cos8) s
Y=g Wf{"(' 2=y '-5'"9]+41TLI-6059| C0sH-Cosh
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This equation for the velocity can be separated into even and odd terms

as follows:
U=(V+Vs)+(Vr+ Vi)

Even: )
V=W
V = l (symmetric sinks)
v = lSlCV;;ue +Woel, (l_coseél (circulation)

Odd:
V -_£ / Sinb, ) ' (anti-symmetric sink

N 47 \Cos0,~0s8/ 5inb and source)

(VI-23)

In the case of zero angle of attack, i. e., e{oz 0 , the above

Equations (VI-23) become

£
V=W=5+W,
Vim e =& ! (VI-24)
STEW L _x 2T mor
2 "2
2% 1
Ve= &2 o € | 2+,
F= 47 .LE;—,;Z 2T [zixx| 2-%

2% x3* l _ & ) [2axm?
e P
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where we made use of the equations

C059,=% )

The above Equations (VI-24) are identical with Equations
(III-9a) of Chapter III. The only difference is that in '-Equations
(I11~9a) the chord of the wing has length ¢ = 2, and in Equations

(VI-24) the chordis c = 4.
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VII. APPENDIX II

POWER FOR SUSTAINED LEVEL FLIGHT
OF VTO AIRCRAFT

It has been observed that in most cases so far experimentally
investigated that the power consumed in transition is a;:-t.ually greater
than that in hovering flight. This has been due to various, more-or-
less unexpected difficulties. The undesirable pitching moment is
cancelled hy a negative lift on the aircraft causing ar increase in the
body drag, with an inducecd drag in the bargain. The importance of
a wing surface as a relieving device has been pointed out previously,

also the absolute necessity of employing proper baffles to avoid serious

losses in propeller efficiency and avoid destruction of the propeller.

We will, in the following, as an example only, study a case in
which the outlet is designed with variable deflectors and the area perpen-
dicular to the thrust vector is reduced as the cosine of the thrust vector
with the vertical. This arrangement represents the simplest.mechanical
case. For instance, when the velocity is pointing rearwards at an angle
of 60 degrees with the vertical the free cross section of the openings is
one half of the original full area. In such a case the pressure behind

the propeller and ahead of the outlet baffles will increase and the flow
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“velocity through the propeller decrease with a corresponding reduction

in the mass flow. An adjustable pitch propeller is required and only 2
limited range of operation is available. We shall, only briefly, indicate
a second case in which the mass flow is kept constant thus permitting the
propeller to operate at constant pitch under full power for acceleration
while the outlet openings are controlled to mﬁ;tain a constant mass flow.
In this case, the free area pf_'!rpendicular to the reaction vecter is slightly
reduced as the speed is increased. .Details of this case will not be con-
sidered in the present paper. However, it is pointed out that a complete

survey of all possible methods is desirable and should be undertaken in

the future.

Finally, there is a short discussion of the pitching moment and

required compensation.

It will be shown in the following how the main performance
parameters are related in the case for which the outlet area perpendicular
to the direction of the jet is varied as the cosinus of the rearward de-

flection angle.

Let us express the lifting force of the fan or fans by the formula

- T=MsWp I(V11-1)
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where V__ is the vertical downward velocity at the outlet of the duct.

Mg is the mass of air per second and is thus equal to

Ms=pApV, (VII-2)

where e is the air density and AD is the cross section of the duct
or ducts at the outlet, measured horizontally or at right angles to the

vertical outlet velocity V Thus one has finally also-

D"

T=€ADV02 (VII-3)

Let us consider the ccndition in a forward equilibrium flight at

a velocity V. The expression for T remains as given. The aircraft

has a wing of area S . The drag coefficient of the aircraft is then ex-

pressed as

2
Co
CD=CDO+ TA (VII-4)

where, as usual, CDO is the drag at zero lift and Cy the lift co-
efficient of the wing. The last term gives the induced drag of the wing

surface S of aspect ratio A . The drag force on the aircraft in forward

flight is thus

L
D___-_Zl-e\/ 5C, (VII-5)
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and the lift force is

where then this lift force of the wing system plus the thrust force G

of the fan system must be equal to the weight W of the aircraft or
L+ T- =w (VIiI-7)

It can be verified immediately that the lift of the wing, if any,

is far less costly in terms of power than the lift due to the fans. There-
I

fore, ac will be evident in the following, the lift coefficient C; should,

under all circumstances, be maintained constant at the highest possible

safe or convenient value until T , the lift of the fan, goes to zero.

Let us consider the ideal power-consumption of an aircraft in
uniform flight with a drag coefficient CD and a lift coefficient Cp, -

The theoretical work done on the mass MS in unit time is

| 2 2
- ' - -
W, =--Ms ( Vo=V ..
where VO is-the outlet velocity which we may consider as composed of

the downward component VD already defined and a rearward pointing

component VR . We may, therefore, rewrite the equation as

Mg (Vp + Ve —V°) (vit-8)
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Notice, at this point, that in addition to the morentum drag on
the aircraft there is, of course, a-drag due to CD . There is a useful
thrust produced by the fan system equal to

T=Ms (Ve—V)

and the useful work required would be equal to

Wi=Ms (Ve = V)V i)

By subtracting the useful work given by Equation (VII-9) from the total
theoretical work of the propeller given by Equation (VII-8) and differ-
entiating with respect to Vp , we find the condition for the minimum

work required,

VR=\/

and we have the following important statement. The minimum work is

(VII-10)

expendent, if and when the rearward velocity compbnent of the issuing

jet is identical with the flight velocity. The drag caused by the normal

registance of the airplane is a function of V only and-does not affect
the derivation.

The result is perfectly general and to be expected since it
obviously means that the horizontal p’lomentum drag of the air mass is

avoided when VR = V.

Note also that the wing should, under éli_conditions, be maintained
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in a position of the highest permissible lift coefficient. We shall next
consider this problem more fully, remembering that thrust must also
be provided to take care of the normal drag of the aircraft. We have
already shown that the momentum drag of the aircraft is ‘'avoided"
when, and if, VR = V. Itis, however, necessary to provide a net or
real forward thrust force preduced by the fan system in the magnitude

(Equation (VII-5) and a net lift force of the fan system equal to the excess

of the weight W of the aircraft over the lift of the wing (Equation (VII-6).

Therefore, with a thrust
— VII-11
Tr=Ms ( Vg—V) : )

one has the equations

Tre=D the drag of the aircraft
and T T=wW-L or written out
for the drag

QVDA.p (VR‘\/)'—*%-eCD VS | (VII-12)

and for the 1lift

Q\/DZAD +—2L€C._VZS_—.—.W (VII-13)
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With w, C., C S, and Ay given in these two basic

L, D’

equations one has from the first equation

\\f'; —_'_ D AD( )+ | (VII-14)

where the velocities are given in terms of the velocity VD

The second equation (VII-13) is similarly written in non-

dimensional form:

leS(vy__w__ :
2 CL’ Ap( VD) — eszA'D ‘ 4 it

Here again the velocities are given in terms of the exit velocity VD :

Work done by the power plant i1;1 equilibrium forward flight is
again given by the formula .(Equation (VII-8)) which may be written in
the form

=LV Ao (Vo + Vi = V°)
where VR given by the expression (Equation (VII-14) ) balances the
drag of the aircraft. Any excess power is or may be used for acceler-

ation of the aircraft.

Rewritten in non-dimensional form and rearranged

Ve 2 /V ¥ Wi B ,
<._.B_.) _( vp) = Zl QAD VDB ' (VII-106)
64
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Notice in these formulas that in stationary condition VR and
V are both equal to zero and both sides of Equations (VII-15) and

(VIi-16) are equal to zero

Equations (VII-15) ‘and (VII-16) may be rewritten

CL/V V¥
e
and
2 2 ]
(g’;)_( \\;o) = —?I_‘V:-Vp — [ (VII-18)

T is the vertical thrust and it will,

where ()(:%CD—%— )
P

of course, decrease in forward motion.

Inserting Equation (VII-14) in Equation (VII-18) there results

2 2
V¥, V| (VY (VII-19)
[ i)+ vp] (Vo)—,X\ !
where \
oc=—-———_I_WL
2TV

We have now in final form three equations; the drayg squation

(VII-12} or (VII-14)

Vi 20(( Vj2+ v | (VII-19a)
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the lift equation (VII-13) or (VII-15)

} CL/V Z_a- W—'_'::'
O‘_Cp\ VD)— T A

and finally, the work relation (VII-16) or (VIi—lS)

<V&>Z_( V )2:_ Wi —
Vp W/ 2TV

By inserting the first eqﬁation into the third one obtains
Equation (VI -I9above. The quantity ¢ may then be plotted aéainst
%D to give a universal plot. Next, the second equation gives a
similar plot of )\ against the same abscissa (—.\6-]-3). Actually the
second equation gives us the value of T and consequently the value
of Vp for any point (%) . The second curve gives finally, with
T and VD
With all the constants given one may finally plot W, T, and VD
against the farward velocity V . Excess power is then used for
acceleration. The ideal excess power is given as a function of the
forward velocity. Since the value of CL has been kept constant in

this treatment, the above equations apply to the region below the

velocity for which the aircraft is completely supported by a wing.

. . v
known, the power consumption W, for each point (,Vb_).
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VIII. APPENDIX III

NOSE-UP PITCHING MOMENT

It is assumed that the airplane in forward flight with the fan
operating maintains a lift coefficient CL of a constant value. Since
part of the lift is indirectly caused by an increase in the circulation
due to the effect of the jet this result means that the actual angle of
attack will be gradually adjusted, preferably by automatic means
providing action on ailerons and tail surface to maintain, at all times,
the largest possible lift on the wing proper -- at least to a practicable
extent. It is useful to develop here the fraction of thrust carried by the
fan system as a fraction of the total weight W . From Equation (VII-15)

it may be seen that

=1b3
I
—
i
<<
<]
N
n

where 6 = _é_c —S— and the fraction is

(VIII-1)

I
1+ B(~-)?
P)
The ratio y:-% is thus a function of the forward velocity V for

a given aircraft with a given fixed horsepower.

The pitching moment caused by the incoming air on the surface
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surrounding the inlet duct is shown in the theoretical section (IIB) to be

expressed as

_+ V1 VIII-2

where R in simple terms is th. ''radius' of the related wing area

around the duct. In other words, the effective arm of the incoming

|
mass force acts as if located '2" R above the duct inlet.

There ig, liowever, also a nose-up pitching moment due to the

rearward velocity Vr of the issuing jet, if and when, the jet deflectors

are located below the center of drag of the aircraft which is normally the

case. The effective tctal moment of incoming and outgoing mass forces

is thus

MZT’{\;—(?’ R+ a) (V1II-3)
D .
where the arm @ is the distance of the location of the jet deflectors

below the duct entrance (or the wing surface).

The remainder of the forward thrust force

Vr—-V
T vV,

acts to counterbalance the drag of the aircraft. The arm of this force

is, therefore, equal to the distance of the jet-deflectors below the center

of resistance of the aircraft. This center may or may not be near the

center of gravity.
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Let this arm be b and we have a nose~up pitching moment

M=T =8~ VR V b (VIII-4)
The counterbalancmg moment, for instance, from a tail surface

S,. with an effective arm L and a lift coefficient C]_‘rr is

T
Me=712"'€' CLr V75l
which may be written
¢S
Me=4¢ Vs As(~=) ALk Cur
. (VIII-5)
2
Me= T("\'\;F) EL
where
_I_ 1
E Cl'f‘ AD

With Equations (VIII-3), (VIII-4), and (VIII-5) there is

V( ’LQ)"" % Vb (Vp/é,

Vpl 2

inserting the expression for __\_/_Rv_\_/. from Equation (VII-19a)
D :
we get ak
2 2
om0
SR A L 4ot =7 |——

or

(VIII-6)
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Notice at once that the condition V = 0 callsfor, as expected,

an infinite tail effect. For very large forward speed V >> Vp

£ =oAL
: L
Since the arm b between the center of drag and the location of the
deflection vanes may be quite small, it is seen that a rather normal or

small tail surface will suffice. The qua.ntity VD is, of course, at high

speed in itself small (while VR or the rearward velocity is large).

”~

The thrust carried by the propeller as lift is, in this case, negligible and

the aircraft is flying as a conventional airplane.

Further, if 0( is in the order of five or so, there is no serious
requirement on the tail for V » Vp . For small forward speed, how-
ever, we may not use a tail surface for compensation of the pitch-up

moment since then, of course, the tail is completely ineffective.

There remains, however, the possibility to use a small tail
rotor 4 la the heiiCOpte'i except that it is to be designed for vertical
operation. It will, in fact, be shown that the power required for such

‘a scheme is actually quite negligible and that the scheme is practical.

We need only balance the moraent (Equation (VIiT.5);.

Mﬂ%(—gw x)
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Since the moment this time, fortunately, is a pitch-up moment,
the location of the tail rotor wauld be in the horizontal tail surface and
the thrust would be downward so that any thrust carried would also

unload the main rotor by the same amount.

Notice that in the proposed aircraft the requirements cutlined
are achieved by various arrangements of simple nature. The aircraft
is designed as a high speed machine. It has a normal tail fully adequate
for flight conditions and large enough to balance required rearward
thrust of the jets at a nominal forward speed. It has a small tail rotor
or supply duct to the tail using in the order of one percent of the total
power of the aircraft. This element fully takes care of the pitch-up
moment inherent in this type of aircraft at a negligible loss of efficiency
compared to any other scheme for the same purpose. Such element is
further highly desirable and necessary for zero speed control in pitch
and the aircfaft control system should be supplemented by similar duct
or ducts to one or both wing tips to provide lateral control at zero apd
low speed. The ouflets of said ducts to be provid.ed with adjustable~area
nozzles to achieve highest efficiency. Power or air to be supplied to
‘such rotor's or ducts either from the main powerplant or duct or from a
separately powered compressor or by mechanical transmission to small

fans as may be preferred.
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